
Reference Article
1st published in March 2016

doi: 10.1049/etr.2015.0053
ISSN 2056-4007

www.ietdl.org
Untangling your Threads – a novel cloud
computing application
Dr. John Yardley JPY Ltd., Surbiton, Surrey, UK
David Fox JPY Ltd., Surbiton, Surrey, UK
Thomas Michel JPY Ltd., Surbiton, Surrey, UK Faculty of Science, Engineering and Computing, Kingston University,
London, UK
Dr. Gordon Hunter Faculty of Science, Engineering and Computing, Kingston University, London, UK
Abstract
Threads is a Cloud-based software service the authors describe as a message hub. It allows an organisation to store,
search and share all its digital messages – emails and phone calls – to improve collaboration and productivity and to
extract otherwise hidden information. Information overload and privacy concerns have conspired to suffocate the
attempts of many firms to share their own data internally. Employees have responded by treating their company
mail server as a private file server, something no mail server was ever designed to be. Threads addresses these
issues at source by providing a framework where large amounts of data can be shared with confidence and searched,
they believe, more easily than with individual private email accounts. Threads achieves this transparently to the user
and requires no changes in working practices. It uses database de-duplication, speech and speaker recognition, arti-
ficial intelligence and a raft of human factors ideas to overcome the obstacles to data sharing. This study examines
the background to Threads, its technology, and the work in progress. By way of example, it discusses the Threads
Enron Database. Threads, they believe, is a unique and technically novel service which they present here as case-study
of an application well-suited to Cloud implementation.
Introduction
As its name implies, Threads is designed to create coher-
ent threads from messages aggregated across a whole
company. A communication dialogue between a
company and a third party often involves several employ-
ees from both sides, each using different media. Viewing
that dialogue as a single thread makes the sequence of
events much clearer to all concerned [1].

Sharing all of an organisation’s messages by means of
a single database presents many challenges. However,
convincing the organisation’s employees that they
may benefit by extracting information easily, safely
and with confidence can present many more.

So, why would an organisation want to do it? The
answer is primarily because there is a massive
amount of valuable company information that is
either locked up or lost in private email accounts
and telephone calls. Even while respecting privacy, it
is possible to see trends and threats that no individual
might ever be aware of. However, if users can be
encouraged to share messages with colleagues, this
adds even more value. It not only helps efficiency
Eng. Technol. Ref., pp. 1–11
doi: 10.1049/etr.2015.0053
and collaboration, it encourages employees to be
more responsible, open and cooperative.

That is all good for an organisation, but employees
might ask why should they share their messages.
Like everything that ever became ‘open’, it is more a
question of why not share messages. For many com-
panies and organisations, only a small percentage of
the employees’ communications are confidential, and
the gains made in sharing non-confidential messages
vastly outweigh the disadvantages of keeping them
private. The biggest gain is transparency. A message
sent from a user who keeps their mail private is often
different in tone and content from one sent by a user
who knows it will be shared. Furthermore, users get
to see the bigger picture of a project or the company’s
business with a particular client.

Threadswas designed under the mantra ‘keep it simple’.
Knowing message sharing might meet some resistance,
it was important not to compound that with a difficult
user experience. The aim was that Threads users
would require no training nor documentation, nor
change their working practices in any way. From the
1
& The Institution of Engineering and Technology 2016



IET Engineering & Technology Reference John Yardley et al.
moment the user logged in, its operation was intended
to be obvious. This imposed some strict rules on the way
data was presented and, as always, simplicity for the
user involves complexity for the designer (compare the
automatic gearbox for motor vehicles).

How did Threads evolve?
The Threads project evolved from the needs of a small
company to share information whose representation
had, over a period of 20 years, changed from physical
to digital [2]. As such, the storage medium moved
from shared physical access – filing cabinets – to
private digital access – personal email accounts. While
the digital form was easier to store and search, it
often ended up locked in private user files. This
applied primarily to company email, but also extended
to documents (e.g. invoices, quotations etc.) that
were not confidential and routinely needed to be
shared amongst employees. As email became the
de-facto currency of communication, where most docu-
ments were shared as email attachments, sharing the
email became the key to re-establishing the collabor-
ation ethos. While various procedures (e.g. using
shared email folders) were put into place to allow the
sharing of email, none was really successful. Apart
from the fact that these required strict discipline on
the handling of email, they often fell down when the
user had several email accounts or was working from
remote locations. Special purpose software – such as
bespoke email clients – were universally shunned, and
rightly so [3]. Gains made through digitisation were
often lost through unnecessary privacy. Finally, but
not least, staff were using their email server as a file
server, something most email servers do badly.

Threads was written as web application driven from a
database which ingested all company messages. As
such, it could be used anywhere and did not require
users to abandon their existing software – hence
staff could continue to use their preferred email
client and not change their working practices.
Threads was designed as a collaboration tool, not as
a replacement communication infrastructure.

While Threads was an excellent management and
compliance tool, to promote effective staff collabor-
ation, it demanded a paradigm shift back to the
days where the default case was to share information.
After some initial reluctance, staff soon realised that,
with the appropriate controls in place, sharing could
be liberating and few wished to return to the posses-
sive ‘old days’. Staff simply needed to review their per-
ceived needs for privacy.
2
& The Institution of Engineering and Technology 2016
Having overcome this, employees needed to see real
benefits before they would subscribe to using
Threads given their perceived reduction in privacy.
They immediately found this because, with Threads,
they could find things they previously could not and,
just as importantly, they were able to devolve respon-
sibility when it was useful.

When digital telephony was introduced within the
company [4] using an open source product called
Asterisk [5], it seemed natural to include telephone
calls – or recordings of them – within the same
Threads message handling framework. An early design
decision to unify the data structures for all types of
message was fully vindicated. Once phone calls could
be seen in the same context as text-based messages –
and vice-versa – the true power of message sharing
really became apparent. In the authors’ case, the integra-
tion of phone calls into Threads was never motivated by
legal compliance or disclosure issues. Indeed, early on,
the decision was taken that calls would only ever be
shared internally. What prompted this initially was to
provide the knowledge that certain phone calls had oc-
curred within the ‘thread’ of a project – without regard
to the actual content of these calls. With the company’s
conversion to IP telephony, and the availability of call
recordings in digital format, it seemed an obvious next
step to include these within our Threads system. Once
they were freely accessible to all staff, users realised
they no longer needed to rely on scribbled notes or
their recollection of a call. With Threads, they could
find a call much as they would an email, listen to it as
many times as they wished or pass the ‘link’ to relevant
colleagues.

The pre-cursor to Threads, a system we called Mail
Robot X (MRX), was originally implemented as a
local-area network (LAN)-based server project. Once
it was decided to commercialise MRX, it was
re-engineered as a Cloud-based system which we
now call Threads.

This article looks at some of the design criteria that
evolved to meet the needs of a workable message
sharing system. It goes onto discuss some of the
implications of handling speech and the reasons
why Threads was ideally suited to implementation
in the Cloud. It then moves onto describe our
recent work in progress: namely, integrating artificial
intelligence, automatic speech recognition (ASR) and
speaker recognition technologies into Threads to
make it an even more powerful and useful tool to
its users.
Eng. Technol. Ref., pp. 1–11
doi: 10.1049/etr.2015.0053



Fig. 1 Simplified view of the Threads schema. PBX stands for
‘Private Branch Exchange’ and represents a source of telephone
calls from the network

IET Engineering & Technology Reference Untangling your Threads a novel cloud computing application
Threads database
The starting point for Threads is the Threads database.
The database contains many tables, but from the
user’s perspective, the user sees just four (Fig. 1):
Messages, Companies, Contacts and Projects.

Since every message has to be stored, the messages
table is a fundamental element of the Threads data-
base. In principle, Threads can be useful simply for
storing messages.

Messages are unified, in the sense that each message
may be an email or (a recording of) a phone call but,
depending on sources available, could be any type of
digital message such as a simple message service
(SMS) or Skype call.

Themain key to classifyingmessages is to knowwho are
the participating parties – i.e. who initiates themessage
and who else is involved. This gives rise to the compan-
ies table and the contacts table to define the contacts’
addresses in the messages and the companies for
which they work. (We use the term companies
throughout this article to denote any organisation).

A subsidiary key to classifying messages is to know
what they are about – namely, their information
content. Where this information can be combined
for a class of messages, it is stored in a table of pro-
jects (Again, the term project is used throughout this
paper to indicate a collection of messages all relating
to some common theme).

Except when inspecting an individual table entry – for
example, reading a message or viewing an address –
all the Threads user ever sees is a screen displaying
one of these four tables (Fig. 2).
Eng. Technol. Ref., pp. 1–11
doi: 10.1049/etr.2015.0053
Threads keeps messages, contacts, companies and
projects permanently related. So a search for a list of
messages will instantaneously reveal the companies,
contacts and projects that are involved in those mes-
sages. This is an important feature of Threads and
adds much to its usability.

Threads dataflow
We define the Threads ‘subscriber’ as the organisation
running the Threads service and ‘users’ as those
people authorised by the subscriber to access Threads.

A new Threads subscriber will begin by defining a list
of companies and contacts with which they normally
deal. For subscribers with no existing contact list
(e.g. a brand new company), this could be created by
directly typing in company and contact details into
the Threads user interface (UI). For companies with pre-
existing contacts, lists can be imported from a file.
Where the subscriber has an existing customer rela-
tionship management (CRM) system, Threads provides
an application programmer interface to automate the
synchronisation of the CRM system with Threads.

A subset of the contacts will be the ‘authorised’
Threads users. These are people with credentials
allowing them to log into Threads and use it to view
information. If Threads is used as a monitoring/compli-
ance tool, there may be very few users. If, as we hope,
Threads is used for collaborative working, then many
employees of the subscriber may be authorised users.

To be of any practical use, Threads has to ingest mes-
sages. These may be emails, digitised [voice over IP
(VoIP)] phone calls or other types of messages.
Message ingestion: In the case of emails, ingestion
can be achieved by creating a Threads email account
on any convenient server, from which Threads can
periodically collect emails for ingestion. This Threads
email account can be fed manually (e.g. by
drag-and-drop) or by using simple rules that are
coded and run on a user’s email client or the
organisation’s email server. This means that there is
no need to provide Threads with credentials
to any private email accounts. Also, there is no limit
to the number or type of accounts that might
feed Threads.

New subscribers would be expected to begin by
depositing email manually (i.e. using a drag-and-drop
approach) and once they have built up confidence that
3
& The Institution of Engineering and Technology 2016



Fig. 2 Typical web-view of the Threads message interface, showing both email messages and recorded phone messages. The ‘traffic light’
system of marking messages green, amber or red is explained in ‘Orphans, ‘contacts I know’, ‘contacts I might know’ and ‘contacts I do not
know’ section below

IET Engineering & Technology Reference John Yardley et al.
Threads is sharing only intended messages, they
invoke automatic processes to ingest messages.

In the case of (VoIP) phone calls, these may be ingested
from a local or remote/hosted private branch exchange
(PBX) database, by monitoring the subscriber’s LAN for
session initiation protocol traffic.

Though other types of messages such as SMS (SMS or
‘texts’) can be ingested, there is the obvious require-
ment that Threads can access them. This, as well as
mobile phone calls, could be done either by
the mobile phone service provider or with a Threads
mobile ‘app’ to intercept appropriate traffic.

If users are to be encouraged to share messages, they
need to feel confident that they are not inadvertently
sharing their private messages. Any hope that employ-
ees can be prevented from using their company mail
account for private messages is likely to be unrealistic.

Thus, rather than telling Threads what messages not
to share, Threads adopts the approach of users
telling Threads what messages it can share. This is
achieved primarily with a database of company con-
tacts. If a contact is in the Threads database and not
flagged as private, messages exchanged with that
4
& The Institution of Engineering and Technology 2016
contact are to be shared. If contacts are not in the
database, then messages between the contact and
the user are also kept private. There are many
mechanisms to make company mail confidential –
but the general rule is ‘do not store personal contacts
in the Threads contact database’. Staff can easily deal
with such matters by using private address books to
manage their private contacts.

Previous experience with CRM systems and contact
databases revealed shortcomings we wanted to
avoid with Threads. One frequent issue was with con-
tacts who worked for several companies – either sim-
ultaneously or sequentially. When a contact leaves a
company, the contact details cannot simply be
deleted – the messages sent to and received from
that contact still exist and may be relevant [6]. Users
still need to know the details of the contact even if
he/she no longer works for the company. Similarly, a
contact may work for several companies or several dif-
ferent branches of the same company. Many CRM
systems deal with this by cloning contacts, one high-
profile example being SalesForce [7].

Threads takes a different approach by only ever
storing a single contact record for each ‘contact
entity’. It then relates this contact record to one or
Eng. Technol. Ref., pp. 1–11
doi: 10.1049/etr.2015.0053



Fig. 3 Conventional relationship between company and contact

IET Engineering & Technology Reference Untangling your Threads a novel cloud computing application
more companies by means of a channel. As such, it
de-duplicates contact information.

Threads subscribers are not prevented from creating
multiple contacts or companies, but it is preferable
to create multiple channels for a single contact or
company. The contact channel is another special
feature of Threads.
Channel: The contact channel essentially establishes
the relationship between the company and the
contact for communications purposes. For each
channel, there is a channel type and a channel value.

If Fred works for Acme Tools, then he might have a
‘work email’ type channel with a value ‘fred@acme.com’.
He might also have a ‘mobile phone’ type channel
with a value of ‘07768-127656’.

Some channels might only be applicable to the
company branch as a whole, for example, a switch-
board number or a generic email address such as
‘info@acme.com’. These we call company channels.
Fig. 3 shows the traditional hierarchical relationship
between companies, contacts and addresses (email,
phone etc.). Fig. 4 shows the (simplified) Threads
schema in which companies are related to contacts
via channels. Rather than an address being seen as
Fig. 4 Threads ‘channel’ relationship between company and contact

Eng. Technol. Ref., pp. 1–11
doi: 10.1049/etr.2015.0053
an attribute of a contact, a channel describes the
way in which a company and contact are related.
Unifying emails, phone calls and other message
types
Internet standards govern the detailed format of an
email message and cover structures such as addresses,
timestamps, attachments etc. [8]. However, for the
purposes of our discussion we are only interested
that an email comprises a list of email addresses (in-
cluding the sender and recipients) and the message
itself (that may contain attachments). From the email
addresses, Threads can deduce the names of the con-
tacts by looking up the contacts related to the channel
value (i.e. email address).

In a VoIP [9] phone system, it is possible to trace each
call either from a database maintained by a local or
remote/hosted PBX [5] or, more generally, from ‘sniff-
ing’ the relevant packets on the subscriber’s LAN.
Such is the importance of collecting phone calls inde-
pendently of the PBX that we have developed an ap-
pliance specifically for the purpose.

A phone call can be treated much the same as an email
except that the channel type will be different – i.e. it will
be of the ‘phone call’ type instead of the ‘email’ type –
and the value will be a phone number rather than an
5
& The Institution of Engineering and Technology 2016



IET Engineering & Technology Reference John Yardley et al.
email address. In general, there will only ever be one
sender (or caller) and one recipient (or person called).
In the case where a call is transferred from one employ-
ee to another, then this can be treated as having mul-
tiple recipients, but relatively simple processing of
metadata will reveal whether one or more of the ‘reci-
pients’ was involved in the main dialogue.

The ‘body’ of a phone call is a digitised recording of a
conversation, whereas the body of an email is a text
string. Aside from these differences, a phone call
may be treated almost identically to an email. The
addressing does of course differ. An email address
has a different syntax to a telephone number, but
aside from this they have similar attributes. However,
searching or indexing a text string (such as an email)
is much more straightforward than doing the same
tasks with a phone call, and we will discuss these in
more detail later in this study.

Similar metaphors can be defined for other types of mes-
sages such as Skype calls and Text (SMS) messages.
Orphans, ‘contacts I know’, ‘contacts I might
know’ and ‘contacts I do not know’

Emails can, and often do, come from or go to email
addresses not contained in company or contact
channel tables. Similarly, phone calls may be exchanged
using numbers not existing in channel tables.

Where there is no related company, Threads creates
‘unrelated’ contact records. Threads designates these
contact records ‘orphans’ – since they have no
parent company – or in the parlance of the Threads
UI, ‘contacts I do not know’. Emails containing
orphans are marked as such and if the sender or re-
cipient(s) are orphans, then the mail is only visible to
the Threads user that sent or received the message.
If the domain (e.g. jpy.com) of an email address
Fig. 5 Threads UI with contact ‘traffic lights’

6
& The Institution of Engineering and Technology 2016
matches an existing company domain in the database,
then these contacts are termed ‘contacts I might
know’. The same happens for phone calls from a
company switchboard number where the specific
contact is unknown. Contacts that can be uniquely
identified via an email address or a personal telephone
number are termed ‘contacts I know’. Threads uses a
‘traffic light’ system to mark each message as contain-
ing ‘contacts I know’ (†), ‘contacts I might know’ (†)
and ‘contacts I do not know’ (†) (Fig. 5). This makes it
very easy to filter mail according to contact type, the
most obvious benefit of which is to hide unsolicited
mail, spam and personal mail.

Note: We also use an optional classification ‘inactive
contacts’ (†) to show that a message contains contacts
that are currently inactive (e.g. left the company).
Projects, keywords and speech processing
within Threads
The classification of messages using addressing infor-
mation (i.e. to/from/cc) is easily defined and obvious
to the user. It is also intuitively easy to search messages
according to participants. However, the classification
of messages by content is significantly more complex
and deciding the right terms to yield a small list of rele-
vant message can be difficult – all the more so given
the diversity of contacts involved.

To make this process easier, Threads uses the concept
of projects – which may be seen as folders which
contain all the messages that relate to a particular
project. It is generally easier to browse projects than
to search for terms whose distribution is unknown
across the complete set of messages.

Ultimately, only a human can decide whether or not a
message belongs to a particular project, though we
hope eventually that Threads will pass the Turing test
Eng. Technol. Ref., pp. 1–11
doi: 10.1049/etr.2015.0053



IET Engineering & Technology Reference Untangling your Threads a novel cloud computing application
for this task andmake it impossible for a user to decide if
the classification was made by Threads or a human.

In the meantime, we are developing ways to make the
selection process much easier for the human and we
devote the rest of this article to describing some devel-
opments currently in the pipeline.
Projects and keywords
Threads allows users to create projects and a hierarchy
of sub-projects. For example, a project called ‘The M4
extension’ might have sub-projects called ‘Tarmac
contractors’ and ‘Health and Safety’.

When a user views a message, he/she has the option
of allocating it to one or more projects. Once allo-
cated, Threads extracts information from the
message and includes it in the project template. This
information includes a list of keywords – or words
with a high information value. As noted by Shannon
in his seminal work on Information Theory [10], infor-
mation content is inversely related to a priori likelihood
of occurrence. Highly common, and hence probable a
priori, words such as ‘and’, ‘but’ or ‘is’ have very low
information value, whereas much less common words
such as ‘demography’ or ‘concurrency’ have much
higher information value.

When offering the list of available projects with which
to associate the message, Threads ranks them in order
of best fit with the message of current interest – the
objective being that the project with the best fit
appears highest on the list. As more messages are
added to the project, the more representative of a
generic message relevant to that project the word sta-
tistics of the project become.

The crucial information that Threads is able to extract
is context relevance. Instead of making decisions in
isolation about how a message best fits a project,
Threads can and does use a mass of context informa-
tion from previous messages. For example, a particular
user might never use the word ‘spridget’ and so, inde-
pendent of other content, that user is less likely to be
associated with projects involving spridgets.
Conversely, another contact might make extensive
use of the word ‘spridget’ in his/her messages, so
those messages are most likely to be relevant to
those projects where that word is common.

The details of this are beyond the scope of this article,
but the interested reader is referred to a more
Eng. Technol. Ref., pp. 1–11
doi: 10.1049/etr.2015.0053
complete discussion by the authors, including descrip-
tions of experiments and their results in [11, 12].

Handling speech
Searching for text strings in an email or a set of emails
is straightforward for a computer. Searching for a spe-
cific thing or things within phone conversations poses
more of a challenge.

With Threads, we are investigating the use of two main
areas of speech technology: automatic speech recogni-
tion (ASR) and automatic speaker identification. A read-
able introductory overview of the field of speech
technology is given by Holmes and Holmes in [13].
Speech recognition: The process of converting a
human speech waveform into digital text is known as
ASR. The ‘Holy Grail’ of ASR is the speech dictaphone –
a device that can, without training or subject
knowledge, reliably produce an accurate digital text
transcription from continuous human speech – just as
human might. There are many ASR systems – both
commercial and open source – available and users have
had a wide variety of experiences with them – from
finding them indispensable to unusable. Some
examples of such ASR systems include Nuance’s
commercial product Dragon Naturally Speaking and
Apple’s Siri, and the open source product Sphinx from
Carnegie Mellon University in the USA.

Though ASR is an area of particular in-house expertise
[14], and a solid understanding of ASR is an essential pre-
requisite to the successful application ofASR, it was never
the intention to develop ASR processes specifically for
Threads. Instead, the aim is to use the best available
ASR in class. No matter what the current performance
of ASR systems, they will undoubtedly improve over
timeandas theydo,wewill beable topass those improve-
ments onto Threads’ users straight away. It has been
widely recognised that the limited bandwidth of the tele-
phone channel and other issues such as noise and cross-
talk make the problem of automatically recognising and
transcribing speech more challenging over a telephone
line than under more ideal conditions [15], and use of
recordings of telephone calls rather than live callsmay ex-
acerbate these problems further. However, as we discuss
below, the aimwithin Threads is not to produce an accur-
ate verbatim transcript of a call, but rather to reliably iden-
tify its theme and to which other messages it is related.

However, the novel characteristics of Threads require
radical changes to the criteria by which most ASR
systems may be measured. For example:
7
& The Institution of Engineering and Technology 2016



IET Engineering & Technology Reference John Yardley et al.
(i) Full speech transcription is not a requirement. The
objective is to allow phone calls to be searched – what
might be called ‘speech indexing’ of the message. As
discussed, rare things have high information value, but
very common things tend to carry little information.
Thus, search terms which use words with low informa-
tion value are rarely of much help in locating mes-
sages (e.g. searching for the word “and”). Although
not always the case, words with a high information
value (keywords) are often acoustically complex and
easier to isolate from a speech waveform. Hence, an
ASR algorithm that renders poor speech transcription
performance might still be useful for searching if it cor-
rectly identifies enough keywords (See also [11, 12, 16]).
(ii) Real-time operation is not a requirement. It may

be days, weeks or years before a message is searched;
hence, ASR algorithms can be applied that are not fast
enough for real-time use or when computing power is
cheap.
(iii) Costs can be adjustable. Already there are many
ASR services available as remote resources, each
with different strengths and different costs.
Subscribers could choose between different algo-
rithms according to financial resources.
(iv) Context. Threads makes available context infor-
mation that would be totally absent in a ‘dictaphone’
situation. Context information includes knowledge of
the speakers and the vocabularies they use, as well
as the projects they are known to be working on.
Fig. 6 Schematic view of ASR and language model modules as incor

8
& The Institution of Engineering and Technology 2016
Again, space prohibits a detailed discussion of our
work in this field, but we are presenting this work to
the speech centric communities. Fig. 6 shows the rela-
tionship of the various speech-related modules includ-
ing the context-based language model. This work is
being undertaken as a collaboration between JPY
Ltd. and Kingston University.

Speaker identification: Automated identification of
speakers through analysis of the acoustic profiles of
their speech (as observed from recordings of their
phone calls) is potentially fertile ground for
extracting context information. This has been a field
of serious research by various authors since the
1970s [17] and major advances have been made
[18]. Though biometric applications of speaker
recognition (e.g. for use in identifying, whereas
someone should be granted access to some secure
resource such as a bank account, on the basis of
their voice profile alone) have met with limited
success and application to date, since intra-speaker
variation may be comparable with inter-speaker
differences, in our situation, further contextual
information is often available. In VoIP telephone
systems, each party’s speech in a two-way telephone
conversation is exchanged on its own (logical)
channel. Unlike an analogue phone call, this permits
the speech pattern for each speaker to be isolated.
By using dialing information (i.e. knowing what
porated in Threads

Eng. Technol. Ref., pp. 1–11
doi: 10.1049/etr.2015.0053



IET Engineering & Technology Reference Untangling your Threads a novel cloud computing application
company or individual made the call) or input from the
user, it is possible to build an acoustic profile of the
voice of each contact. The problem is no longer one
of identifying a speaker from an extremely large set
of possible people, but rather one of selecting the
correct speaker from a small set of profiles. This
could also be of assistance in the speech recognition
process – if who is speaking can correctly be
identified, then a specialised profile of word statistics
(or ‘language model’) commonly used by that
particular person could be used to assist in the ASR
for keyword identification.

Automated speaker identification may be used in the
following ways:

(i) To identify an unknown contact from a list of
known contacts using a single switchboard number
and a set of profiles for all the speakers associated
with that number.
(ii) To establish a contact as unlikely to be known to

Threads, on the basis of his/her speech profile being
very different from every profile stored in the
Threads database.
(iii) To establish that a caller is masquerading as a
known contact with a very different speech profile.

As with speech recognition, it is not essential
(except in cases where it is desirable that fraudulent
callers are identified immediately) that this process
happens in real-time. It can be deferred to a time
when computing is cheap and/or call volume is low
(e.g. at night). Similarly to the case of ASR, as better
speaker models and algorithms evolve, they can be im-
mediately adopted to give better performance without
negatively impacting the user.

However, with the exception of a few highly specia-
lised applications, speaker identification has not yet
been widely adopted as a means of identifying a
user by businesses. This suggests that there are still
many challenges to be overcome in this field [19].
Cloud implementation
Originally, Threads was planned as a LAN-based
(on-premise) server application. By the time the idea
of commercialising Threads had formed, Cloud com-
puting was gaining traction as a compelling platform.
This was for the following reasons:

† The input/output rates and storage requirement for
email and phone calls are relatively low per user – well
Eng. Technol. Ref., pp. 1–11
doi: 10.1049/etr.2015.0053
within Internet bandwidth limits of anticipated sub-
scriber companies.
† Deployment as a single, scalable service reduced the
cost and effort of maintenance and upgrading of the
service. It was far easier than local deployment on
the subscriber’s hardware.
† The Cloud was highly conducive to integration of
third-party processing services such as signal/data ana-
lysis and remote/hosted PBX systems.
† The fixed costs were predictable and subscription to
the service required no subscriber commitments.
If any application could be described as ideal for im-
plementation on the Cloud, then it was Threads.

Threads is currently being developed using the
Amazon Web Services (AWSs) Elastic Cloud
Computing (EC2) platform [20]. The web application
servers run behind a ‘load balancer’, allowing easy
scaling by adding webserver instances on demand as
requests seen by the load balancer increase. Threads’
application servers run on Linux, using Apache and
PHP. They connect to a Windows server hosting a
‘Microsoft SQL Server’ database, again running
within the EC2 environment. Email ingestion from
clients’ servers runs on a separate Linux server,
again running PHP and writing to the SQL Server
database as email and other messages are added.
Email attachments and phone call recordings
are stored in AWS S3 storage, for security and ease
of access.

At the time the decision was first made to commercial-
ise Threads as a Cloud-based service, many of the
functions that would eventually be necessary for a
commercial service were untested or, mostly, not avail-
able. These include:
† Solid state disk storage on our instances for
increased performance.
† Offline storage in the cloud, for archiving old email
at lower storage costs.
† Virtual private cloud, for secure isolated IP subnets.
† Higher performance, cheaper and instance types.
† Custom AWS Linux distribution and update
repositories.
† ‘CloudFormation’ for building our instance soft-
ware stack (2011).
† EC2 for Windows (2008).
† Elastic Public IP’s (2008).
† S3 storage (2008).
9
& The Institution of Engineering and Technology 2016



IET Engineering & Technology Reference John Yardley et al.
Fortunately, these services have since been released
and deployed, but at the outset, adoption of the
Cloud was very much an act of faith.

Threads Enron database [21]
A major part of the future development of Threads
involves testing our various threading strategies. This
requires real operational data since simulating large
volumes of messages can produce misleading results.

At the outset of the project, the only data available
was our own (JPY Ltd.). Our current corpus comprises
over 500,000 emails and approximately 10,000 digi-
tised phone calls. For confidentially reasons, few
outside companies were found that were prepared
to share their mail corpora and even fewer had
recorded their telephone calls. Obtaining other oper-
ational data for experiment and test was nevertheless
seen as an important part of the project. Algorithms
which perform well on one set of data may not
work well on a different dataset – as was the case in
the infamous early application of neural networks by
the U.S. Military to decide whether a given photo-
graph did or did not contain a concealed tank [22].

To remedy this, we set about ingesting the entire
public-domain corpus of Enron emails and phone
calls. The collapse and bankruptcy of the mighty US
Enron Corporation in 2001 was one of the world’s
largest corporate scandals [23], leading to major
fraud and non-compliance trial. One consequence of
the investigation was the decision of the US
Department of Justice to make a large proportion of
Enron’s data – including some 250,000 emails, relat-
ing to 350 projects, involving around 28,000 contacts
from 1500 companies, plus 76 recordings (with tran-
scriptions) of telephone calls – available in the public
domain [24].

The ingestion of this data was a time-consuming and
complex operation since the emails were available in a
bespoke database which distorted much of the origin-
al metadata. The phone calls were published in a
number of disparate locations, and again some meta-
data was not available. The fact that we were able, by
various means, to obtain court transcriptions of phone
calls provided an invaluable dimension that was un-
available from our own corpus.

Using Threads we were able to reconstitute the Enron
corpus into a searchable form and restore a significant
amount of lost information. This has been published
publicly as the TED [21] and, as such, has attracted
10
& The Institution of Engineering and Technology 2016
many users – academic, journalistic and commercial.
The reader is referred to the TED web page for more
background to Enron and to TED. Using both the
JPY dataset (described above) and the Enron corpus,
we were able to perform experiments, both on text
data and on transcribed telephone calls for which a
high-quality transcription was available, on keyword
identification and the use of keywords for message
classification using data from two completely inde-
pendent sources. This enabled us to test the reliability
and robustness of our methods and ensure that the
algorithms were not just suitable for use on one par-
ticular dataset. Full details of these experiments, and
their results, are given in [12, 25].

Conclusion
We hope this article has provided an interesting over-
view of what we believe is a novel Cloud application
relevant to companies and organisations of any size
and in any sector.

While much of the internal design of Threads is con-
tained within various patent applications [26], we
trust this article gives a broad overview of the tech-
nologies and methods employed and under
development.

Applications for Threads include management report-
ing, legal compliance, data security, backup, archive
and collaborative working. It is especially useful in
project-oriented professions such as law, architecture
and engineering. What is particularly exciting is
Threads’ potential for extracting otherwise untapped
knowledge and strategic help from messages already
in a subscriber’s possession – that is, Threads’ ‘Big
Data’ potential.

The use of such a system raises many issues and it is yet
to be established whether some larger organisations
are ready to share internally their non-confidential mes-
sages. However, as a management reporting and dis-
covery tool, we feel it has much to commend it.

The Threads framework is a starting point and the in-
formation that can be extracted by use of complex
technologies such as speech recognition and artificial
intelligence is limitless. Complex as these technologies
are, they are used to make UI as intuitive as possible.
We have tried to keep to the path that, above all,
Threads must be simple to use and understand.

We would be grateful for any feedback on Threads
and would welcome hearing from any organisation
Eng. Technol. Ref., pp. 1–11
doi: 10.1049/etr.2015.0053



IET Engineering & Technology Reference Untangling your Threads a novel cloud computing application
interested in trialling the system in their own business
environment.

Acknowledgements
The authors’ work on speech processing, keyword
analysis and various other aspects of the Threads
project have been undertaken as a collaboration
between JPY Ltd. and Kingston University - supported
by a Knowledge Transfer Partnership (KTP) award
from the UK government agency Innovate U.K.
(UKinnovate.org). We also wish to acknowledge the
contribution of software engineers, Karen Clarke and
Narinder Chandi to the development of Threads
project.

REFERENCES

[1] JPY plc.: ‘Threads website’, 2014. Available at http://www.
threads.uk.com

[2] Chowdhury, G.: ‘Introduction to modern information re-
trieval’ (Facet Publishing, London, 2010, 3rd edn.)

[3] Schuff, D., Turetke, O., Croson, D.: ‘Managing email over-
load: solutions and future challenges’, IEEE Comput. Soc.,
2007, 40, (2), pp. 31–36

[4] Yardley, J.: ‘Adopting an open source VoIP phone system’.
Available at http://www.jpy.com/support/articles/adopting-
open-source-voip, 2010

[5] Imran, A., Mohammed, A.Q., Khan, M.: ‘Asterisk VoIP
private branch exchange’. Int. Multimedia, Signal
Processing and Communication Technologies. IMPACT’09,
IEEE, New York, NY, USA, 2009, pp. 217–220

[6] Lazarov, V.: ‘Comparison of different implementations of
multi-tenant databases’, in IEEE Components, Packaging, &
Manufacturing Technology Society (IEEE CPMT-Taipei)
(Eds.): ‘The CRM database schema’ (Technische Universitat
Munchen, 2007), pp. 12–13

[7] Salesforce Inc.: ‘Salesforce Website’, 2016. Available at https
://www.salesforce.com. For more information on cloning,
perform a web search on ‘Salesforce contact cloning’

[8] Internet Engineering Task Force RFC memoranda 2046,
2047, 4288, 4289 and 2049

[9] Davidson, J.: ‘Voice over IP fundamentals’ (Cisco Press,
Indianapolis, IN, USA, 2006)

[10] Shannon, C.E.: ‘A mathematical theory of communication’,
Bell Syst. Tech. J., 1948, 27, (3), pp. 379–423

[11] Hunter, G., Denholm-Price, J., Michel, T., et al.: ‘Keeping
your threads untangled, an intelligent system for
Eng. Technol. Ref., pp. 1–11
doi: 10.1049/etr.2015.0053
semi-automatically organising corporate messages by
content’. Proc. 11th Int. Conf. on Intelligent Environments,
2015

[12] Hunter, G., Denholm-Price, J., Michel, T., et al.: ‘Progress
towards a smarter office via a novel intelligent system for
message organisation’. Proceedings Fourth Int. Workshop
on Smart Offices and Other Workplaces (SOOW), Prague
Amsterdam, 2015

[13] Holmes, J., Holmes, W.: ‘Speech synthesis & recognition’
(Taylor & Francis, London, 2001, 2nd edn.)

[14] Yardley, J.: ‘Word identification in speech by phonetic ana-
lysis’. PhD thesis, University of Essex, 1981

[15] Gauvain, J.L., Lamel, L., Schwenk, H., et al.: ‘Conversational
telephone speech recognition’. Proc. IEEE Int. Conf. on
Acoustics, Speech & Signal Processing (ICASSP), 1988

[16] Yardley, J., Hunter, G., Denholm-Price, J., et al.: ‘Using ASR
to get data out, not in’. UKSpeech Conf., University of East
Anglia, Norwich, UK, July 2015

[17] Atal, B.S.: ‘Automatic recognition of speakers from their
voices’, Proc. IEEE, 1976, 64, p. 460

[18] Reynolds, D.A.: ‘Automatic speaker recognition using
Gaussian mixture speaker models’, Linc. Lab. J. (M.I.T),
1995, 8, (2), pp. 173–192

[19] Singh, N., Khan, R.A., Shree, R.: ‘Applications of speaker rec-
ognition’, Procedia Eng., 2012, 38, pp. 3122–3126

[20] Amazon Inc.: Amazon Web Services. Available at http://www.
aws.amazon.com

[21] JPY Ltd.: Threads Enron Database. Available at http://www.
threads.uk.com/threads-enron-database

[22] Fraser, N.: ‘Neural Network Follies’, 1998. Available at https://
www.neil.fraser.name/writing/tank/

[23] Smith, R., Emshwiller, J.: ‘24 days: how two wall street
journal reporters uncovered the lies that destroyed faith in
corporate America’ (Harper Collins, New York, 2011)

[24] Klimt, B., Yang, Y.: ‘The enron corpus: a new dataset for
email classification research’. Proc. of European Conf. on
Machine Learning (ECML), Pisa, Italy, 2004

[25] Hunter, G., Denholm-Price, J., Yardley, J., et al.: ‘The contri-
bution of automatic speech recognition for keywords to
assist in the integrated organisation of digital messages’,
Proc. Inst. Acoust., 2015, 37, (2), pp. 260–267

[26] JPY Ltd.: ‘Digital messaging system’. UK Patent Application
No. 1408302.6, 2015, International (PCT) Patent
Application No. PCT/GB2015/050580, 2015

[27] Majewski, W., Myslecki, W.: ‘Application of automatic
speech recognition to evaluation of speech transmission
quality in analog communication systems’, J. Acoust. Soc.
Am., 1999, 105, (2), p. 976
11
& The Institution of Engineering and Technology 2016


	Introduction
	Threads database
	Projects, keywords and speech processing within Threads
	Cloud implementation
	Threads Enron database [21]
	Conclusion
	Acknowledgements
	References

